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Abstract. The one-dimensional Kondo lattice model is investigated by means of Wegner’s flow equation
method. The renormalization procedure leads to an effective Hamiltonian which describes a free one-
dimensional electron gas and a Heisenberg chain. The localised spins of the effective model are coupled by
the well-known RKKY interaction. They are treated within a Schwinger boson mean field theory which
permits the calculation of static and dynamic correlation functions. In the regime of small interaction
strength static expectation values agree well with the expected Luttinger liquid behaviour. The param-
eter Kρ of the Luttinger liquid theory is estimated and compared to recent results from density matrix
renormalization group studies.

PACS. 75.30.Mb Valence fluctuation, Kondo lattice, and heavy-fermion phenomena – 71.10.Pm Fermions
in reduced dimensions – 11.10.Gh Renormalization

1 Introduction

The fascinating subject of heavy fermion physics in rare-
earth and actinide systems has been a challenge for the-
oretical and experimental investigations for decades [1].
The intriguing properties of these materials are far from
being understood and still give us a lot of puzzles to solve.
Theoretical studies of the heavy fermion materials are
based on several models like the periodic Anderson model
(PAM) [2]. Another generic model is the Kondo lattice
model (KLM) which describes a noninteracting electron
gas coupled to localised spin moments via a Heisenberg
spin interaction. The Hamiltonian reads

H =
∑

kσ

εk c†kσckσ +
J

2

∑

iαβ

Sic
†
iασαβciβ , (1)

where εk = −∑
ij tij eik(Ri−Rj) is the dispersion relation

for the electrons on the lattice, tij being the hopping in-
tegrals. The parameter J is the exchange integral of the
local spin interaction, the so called Kondo exchange.

We want to consider here the one-dimensional case
which has been the subject of numerous numerical and
analytical investigations. Numerical studies were based
on the Quantum Monte Carlo (QMC) method [3], ex-
act diagonalization (ED) studies [4,5], the density matrix
renormalization group (DMRG) [6–10] or the numerical
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Fig. 1. Phase diagram after [12].

renormalization group (NRG) method [11]. Analytical ap-
proaches comprised the bosonisation technique [12,13] or
the renormalization group (RG) theory [14].

The phase diagram of the one-dimensional KLM as a
function of the Kondo coupling J and the band filling nc

of the conduction electrons is quite accurately known.
In higher dimensions the KLM is believed to show the
well-known Doniach phase diagram [15]. In contrast to
the latter the one-dimensional model does not exhibit a
magnetically ordered phase in the parameter regime of
small interaction strengths J . In this parameter regime



316 The European Physical Journal B

the corresponding phase diagram is governed by a param-
agnetic metallic phase [4]. There, the model is assumed to
belong to the universality class of the so called Luttinger
liquids [16] which possess gapless charge and spin excita-
tions resulting in an algebraic decay of the corresponding
correlation functions. The asymptotic form for density-
density- and spin-spin-correlations are [17]

〈δn(x)δn(0)〉 =
Kρ

(πx)2
+ A1 cos(2kF x)x−1−Kρ

+ A2 cos(4kF x)x−4Kρ (2)

〈S(x) · S(0)〉 =
1

(πx)2
+ B1 cos(2kF x)x−1−Kρ . (3)

The parameter Kρ is a model dependent constant which
determines the low-energy physics. Apart from the param-
agnetic metallic phase for small J/t the phase diagram fur-
ther comprises a ferromagnetic ordered phase for large J
and a spin liquid insulator phase at half-filling, nc = 1.
There are two limiting cases in which the ground state
has been proven to be ferromagnetic [4]. Firstly, the limit
of vanishing electron density nc → 0, secondly the case of
infinite coupling strength J/t → ∞. The situation at half
filling is special in the sense that it exhibits finite gaps for
spin and charge excitations at any finite coupling J .

The KLM can be understood as an effective
Hamiltonian of the above mentioned PAM. It is connected
to the PAM by a Schrieffer-Wolff transformation [18].
This property naturally raises the question whether the
localised spins in the KLM participate in the formation of
the Fermi surface, or in other words: does kF = ncπ/2 or
kF = (nc + 1)π/2 hold? The size of the Fermi surface can
be read from the positions of singularities in certain cor-
relation functions. Recent results seemed to confirm the
picture of a small Fermi surface with kF = ncπ/2 [7].
However, a more careful analysis which has recently been
performed by Shibata et al. [19] supports a large Fermi
surface.

In this paper we shall apply the analytical method of
continuous unitary transformations (flow equations) pro-
posed by Wegner [20] and G�lazek/Wilson [21] to the one-
dimensional KLM. It was first applied to this model in
arbitrary dimensions by Stein [22]. He derived an analyt-
ical expression for the RKKY interaction.

In Section 2 we shall give a short introduction into the
flow equation method. In Section 3 the method will be
applied to the one-dimensional KLM. By integrating out
the Kondo coupling between the conduction electrons and
localised spins we arrive at a decoupled system of a renor-
malized noninteracting one-dimensional electron gas and a
renormalized spin chain. In the latter the spins interact via
an effective spin exchange. Within the framework of the
flow equation method it is straightforward to find expec-
tation values and correlation functions, if the eigenvalue
problem of the effective model is known. In Section 4 we
shall show how the method can be used in order to verify
the expected characteristic behaviour of a Luttinger liq-
uid. Previous investigations of the one-dimensional KLM
have mainly focused on static properties like the momen-
tum distribution or spin and charge correlation functions.

In this work we shall put special emphasis on the investi-
gation of dynamic properties and extend already existing
results for the dynamics.

2 Flow equation method

To begin with we would like to sketch the concept of the
flow equation method which was independently developed
by Wegner [20] and G�lazek/Wilson [21] in 1994. Since then
the method has successfully been applied to a great num-
ber of problems, e.g. the electron-phonon-problem [23],
one-dimensional interacting fermion systems [24] or the
spin-boson-problem [25].

The basic idea of the flow equation method is the ap-
plication of a continuous set of unitary transformations to
a given Hamiltonian

H(l) = U(l)HU†(l). (4)

Here l means the continuous flow parameter. The purpose
of this procedure is that one wishes to diagonalize or at
least simplify the Hamiltonian. Thereby the parameters
of the Hamiltonian become renormalized. This treatment
is translated into the language of differential equations by
using the expression

η(l) =
dU(l)

dl
U†(l) (5)

for the antihermitean generator η(l) = −η†(l) of the
unitary transformation. The differential equation for the
Hamiltonian takes the simple form

dH(l)
dl

= [η(l),H(l)] . (6)

The generator has to be suitably chosen. Wegner’s ap-
proach starts from a decomposition of the Hamiltonian
into an unperturbed part H0, whose eigenvalue problem
is assumed to be known, and a perturbation H1. Wegner’s
generator is given by

η(l) = [H0(l),H(l)] (7)

which is simply the commutator between the unperturbed
part H0(l) and the perturbation H1(l). This generator in-
tegrates out all interaction terms except for possible de-
generations [20]. It finally leads to a diagonal or block-
diagonal effective Hamiltonian.

3 Flow equations for the Kondo lattice model

We now turn to the derivation of the flow equations for
the parameters of the Hamiltonian. With this in mind
we proceed as follows. Firstly, we give the flow invariant
Hamiltonian which includes new generated, effective in-
teractions. The flow invariant Hamiltonian then leads us
to the specification of the generator. Thereby we shall in-
troduce some of the necessary approximations within our
approach.
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3.1 Flow equations for the Hamiltonian

The first step in deriving the flow equations is the deter-
mination of the generator η(l). In a first step we wish to
integrate out the Kondo coupling between the conduction
electrons and the localised spins, so the most simple gen-
erator is

η(l) =
1

2N

∑

ikqαβ

ηJ
kq(l)Si · σαβc†kαcqβ ei(k−q)Ri =: ηJ (l),

(8)

where the coefficients ηJ
kq(l) are still unspecified. They de-

pend on the concrete choice of the generator. Wegner’s
approach starts out from the generalised form of equa-
tion (7). If we take only the conduction electrons to be H0,
we obtain ηkq(l) = (εk − εq)Jkq(l) for the coefficients of
the generator. The commutator between the generator (8)
and the Hamiltonian (1) gives rise to new, effective inter-
actions. Using Wegner’s approach they enter the genera-
tor and are eventually integrated out. We shall introduce
a more general form of η(l) below.

In order to see what kind of effective interactions
emerge, let us commute the initial Hamiltonian (1) and
the generator of equation (8). After some calculation we
obtain the following Hamiltonian

H(l) =
∑

kσ

εk(l) : c†kσckσ :

+
1

2N

∑

kq

χkq(l) : Sk−q · Sq−k : +Ec(l)

+
1

2N

∑

kqαβ

Jkq(l)Sk−q · σαβ : c†kαcqβ :

+
1

4N2

∑

kpqσ

Mkpq(l) : Sk−p · Sp−q :: c†kσcqσ :

+
1

4N2

∑

kpqαβ

iDkpq(l)(Sk−p × Sp−q) · σαβ : c†kαcqβ :

= He(l) + HS(l) + Ec(l) + HJ(l) + HM (l) + HD(l),
(9)

where : X : denote operators resulting from a decoupling
scheme which we shall discuss later.

Before we proceed let us take a closer look at equa-
tion (9). The first line represents the block diagonal part of
the Hamiltonian since electron and spin operators are de-
coupled. It contains a complicated RKKY-like spin inter-
action term between the local moments. The second and
third line comprise the nondiagonal or interaction part.
Aside from the Kondo coupling we get interactions be-
tween the local moments which are either symmetric or an-
tisymmetric with respect to interchange of the sites. Cor-
respondingly, the first one couples to the electronic charge
density, whereas the second one couples to the electronic
spin density. We restrict ourselves to these terms because
they are the most important ones in the regime of small
interaction strength J . That way the above Hamiltonian

becomes flow invariant and equation (9) is valid for all
flow parameters l. For l = 0 it represents the initial
Hamiltonian (1). This implies the following initial values
of the parameters

εk(l = 0) = εk, Jkq(l = 0) = J

χkq(l = 0) = 0, Mkpq(l = 0) = 0

Dkpq(l = 0) = 0, Ec(l = 0) =
∑

k

εknk. (10)

The prefactor of any operator term of equation (9) con-
trols the strength of the respective operator. Within the
framework of the flow equation method they are deter-
mined by corresponding differential equations. With the
choice of the generator η(l) we can control which of these
terms are kept and which are to be vanished. Since the
aim of our renormalization procedure is a blockdiagonal
Hamiltonian in which electron and spin operators are de-
coupled, we have to remove all terms describing interac-
tions between electron and spin operators. The genera-
tor η(l) of the continuous unitary transformation has to
be chosen appropriately.

With this in mind we can now write down the gener-
ator η(l). Using Wegner’s approach we have to take into
account the generated, effective interactions. The genera-
tor reads

η(l) = ηJ(l) + ηM (l) + ηD(l)

=
1

2N

∑

kqαβ

ηJ
kq(l) Sk−q · σαβ : c†kαcqβ :

+
1

4N2

∑

kpqσ

ηM
kpq(l) : Sk−p · Sp−q :: c†kσcqσ :

+
1

4N2

∑

kpqαβ

ηD
kpq(l) i(Sk−p × Sp−q) · σαβ : c†kαcqβ :

(11)

and the prefactors ηJ
kq(l), ηD

kpq(l) and ηM
kpq(l) are deter-

mined by equation (7).
After the transformation, i.e. in the limit l → ∞, only

the first line of equation (9) remains. It represents the
diagonal part H0(l). This effective Hamiltonian can be
used to easily calculate physical properties. The nondi-
agonal part H1(l) vanishes for l → ∞ and the effective
Hamiltonian H̃ := H(l = ∞) then reads

H̃ =
∑

kσ

ε̃k : c†kσckσ : +
1

2N

∑

kq

χ̃kq : Sk−q · Sq−k : +Ẽc

= H̃e + H̃S + Ẽc. (12)

In the following we shall denote all renormalized variables
by a tilde. As equation (12) tells us the effective model
will consist of a one-dimensional noninteracting electron
gas and a Heisenberg spin chain with renormalized param-
eters.

We now have all ingredients needed to derive the flow
equations for the parameters of the Hamiltonian. Before
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doing this we want to look at the approximations that have
to be done. Firstly, we neglect interactions of order O(J3)
and higher in the Hamiltonian (9). Secondly, we decouple
higher operator products in order to reduce them to those
appearing in H(l). This gives rise to operator expressions
of the form : X :. They refer to fluctuation operators and
mean either a normal order product of fermionic opera-
tors or a Hartree-Fock-decoupling scheme of spin operator
products

: c†kσckσ : = c†kσckσ −
〈
c†kσckσ

〉
, (13)

: Sk−q · Sq−k : = Sk−q · Sq−k − 〈Sk−q · Sq−k〉 . (14)

The thermodynamic average will here be taken with re-
spect to the effective model H̃, equation (12), which
describes a decoupled system of a simple Fermi gas
(electrons) and a Heisenberg spin chain with long-
range interactions. These expectation values are therefore
l-independent. The decoupling leads to a formal temper-
ature dependence of the flow equations. Here we consider
only the ground state properties, i.e. T = 0. For the sake
of simplicity we introduce the abbreviation S(k − q) :=
〈Sk−q · Sq−k〉 for the spin correlation function. One may
also think of other expectation values like 〈Sk−q × Sq−k〉
or 〈Sq〉. Since we consider the limit of small Kondo cou-
pling J , the system is in the paramagnetic phase, where
no symmetry is broken. Therefore these expectation val-
ues vanish.

Evaluating the commutator between the genera-
tor (11) and the Hamiltonian (9) we arrive at the flow
equations for the parameters of the Hamiltonian. For
the sake of clarity the l-dependence of all parameters is
dropped. The electronic single particle energies εk obey
the following differential equation

dεk

dl
=

1
2N

∑

q

S(k − q)ηJ
kqJqk. (15)

Here S(k− q) is the local moment’s spin correlation func-
tion which has to be evaluated with respect to the renor-
malized Hamiltonian H̃. It is therefore l-independent. As
the effective model is not known before the end of the
transformation we have to solve all flow equations self-
consistently.

For the parameter χkq of the effective spin interaction
we obtain the following flow equation

dχkq

dl
= (nk − nq)ηJ

kqJqk. (16)

The occupation numbers nk which enter the above equa-
tion are again formed with respect to the effective model.
The constant Ec of H0(l) follows

dEc

dl
=

1
N

∑

kq

(nk − nq)S(k − q)ηJ
kqJqk. (17)

We restrict the renormalization of the effective interac-
tion terms to contributions of order O(J2). Therefore both

coupling parameters Dkpq and Mkpq obey the same flow
equation

dDkpq

dl
=

1
2

(
ηJ

kpJpq + ηJ
qpJkp

) − (εk − εq)ηD
kpq . (18)

The first term is responsible for the generation of the ef-
fective coupling while the second contribution, which is
always negative, ensures the vanishing at the end of the
renormalization procedure. Finally for the flow equation
of the Kondo coupling we find

dJkq

dl
= −(εk − εq)ηJ

kq

+
1
N

∑

p

(
np − 1

2

) (
ηJ

kpJpq + ηJ
qpJpk

)

+
3

8N

∑

p

(
ηJ

kpDpkq + ηJ
qpDpqk

)

+
3

8N

∑

p

(
ηD

kqpJpk + ηD
qkpJpk

)

− 1
8N

∑

p

(
ηJ

kpDp,p+q−k,q + ηJ
qpDp,p+k−q,k

)

− 1
8N

∑

p

(
ηD

k,p+q−k,pJpk + ηD
q,p+k−q,pJpk

)
, (19)

where we have taken into account correction terms up
to order O(J3). Therefore we expect to find reasonable
results only in the parameter regime of small coupling
strength J/t. As this ratio increases further correction
terms have to be included. The flow equations (15) to (19)
represent a closed system of first order differential equa-
tions, whose solution can only be found by numerical in-
tegration.

3.2 Approximations for the effective model

In the preceeding subsection we have derived flow equa-
tions for the parameters of the Hamiltonian. As to solve
them we still need an analytical expression for the spin
correlation function S(k − q). As it describes spin corre-
lations of the effective model, we are dealing here with a
one-dimensional Heisenberg chain with long-range interac-
tions whose exact solution is not known. Hence, we have to
resort to further approximations. We stress here that this
is the most crucial approximation within our approach be-
cause it strongly affects all renormalized quantities. Since
the spin interaction is the result of the continuous unitary
transformation it is not known until the transformation is
completely performed.

As our approach is only valid for small J/t, i.e. for
the paramagnetic metallic phase with no broken symme-
try, we use the Schwinger boson formalism to describe the
spin system [26]. It preserves the rotational invariance of
the spin Hamiltonian. The spin operators are expressed in
terms of Schwinger bosons aiσ and a†

iσ according to

Sγ
i =

1
2

∑

σσ′
a†

iσ σγ
σσ′aiσ′ , (20)
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where σγ
σσ′ stands for the Pauli spin matrix. Since the oc-

cupation number for bosons is not restricted, a local con-
strained of the form

∑
σ a†

iσaiσ = 2S must be enforced.
We follow here the procedure of Trumper et al. [27] or

of Ceccatto et al. [28] and introduce two fields

Aij =
1
2

∑

σ

σ aiσajσ̄ = −Aji (21)

and
Bij =

1
2

∑

σ

a†
iσajσ = B†

ji (22)

describing antiferro- and ferromagnetic correlations, re-
spectively (σ̄ = −σ). This yields to the following
Hamiltonian

H̃S =
∑

ij

JijN (B†
ijBij) − A†

ijAij . (23)

The expression N (O) stands for a normal order product
of boson operators. The Hamiltonian is now biquadratic
with respect to the Schwinger boson operators. We use
a mean field theory in order to decouple the biquadratic
terms. By using the mean field parameters 〈Bij〉 and 〈Aij〉
and replacing the local constrained by a global one we
obtain a Hamiltonian which can easily be diagonalized
via a Bogolubov transformation. Introducing new boson
operators αkσ = uk akσ + iσvk a†

−kσ̄ we obtain

H̃S =
∑

qσ

ωqα
†
qσαqσ +

1
2

∑

qσ

ωq, (24)

with ω(q) =
√

(γB(q) − λ)2 − γ2
A(q) representing the en-

ergies of the elementary excitations α†
qσ of the spin system.

Here the quantities γA(q) = i
2

∑
Rij

Jij〈Aij〉 eiqRij and
γB(q) = 1

2

∑
Rij

Jij〈Bij〉 eiqRij are used. The mean field
parameters 〈Bij〉 and 〈Aij〉 and the Lagrange parameter λ
have to be determined selfconsistently by solving the cor-
responding saddle point equations.

Finally we find an analytic expression for the spin cor-
relation function which for T = 0 reads

S(q)T=0 =
1

4N

∑

k

(cosh [2(θk − θk+q)] − 1) , (25)

with θk = − 1
2 tanh−1

(
γA(k)

γB(k)−λ

)
.

Compared to methods like the Bethe ansatz for
the nearest-neighbour Heisenberg chain the approxima-
tive Schwinger boson treatment discussed above has the
advantage that as many interaction terms as possible
can be taken into account. With the approximation for
the effective model we are able to describe the one-
dimensional KLM consistently within the framework of
the flow equation method. Any physical quantity we are
interested in can be evaluated within the present ap-
proach. Especially, we emphasise that nothing has to be
put in by hand.

3.3 Expectation values and correlation functions

We now turn to the calculation of expectation values and
correlation functions. In this subsection we give the essen-
tials for the derivation of certain important expectation
values and correlation functions. We shall discuss the re-
sults in Section 4.

The retarded Green’s function between operators A
and B is in general defined as the following commutator
or anticommutator relation

GAB(t) = −iθ(t)〈〈A(t); B〉〉 = −iθ(t)〈[A(t), B]±〉, (26)

depending on the statistics under consideration. The ther-
modynamic average and the time-dependence have to be
taken with respect to the full Hamiltonian. One can ex-
ploit the invariance of the trace under unitary transfor-
mations and obtains

GAB(t) = −iθ(t)〈〈Ã(t); B̃〉〉H̃. (27)

Now the thermodynamic average and the time-
dependence are taken with respect to the effective model.
According to the transformation of the Hamiltonian we
also have to transform the operators. They obey a similar
flow equation as the Hamiltonian

dA(l)
dl

= [η(l), A(l)] . (28)

The commutation between η(l) of equation (11) and the
electron operator ckσ leads to the following operator struc-
ture

ckσ(l) = αk(l)ckσ +
1
N

∑

q

σγkq(l)Sz
k−qcqσ

+
1
N

∑

q

γkq(l)S−σ
k−qcqσ̄, (29)

where we have taken only the correction terms into ac-
count that couple to one local moment. The initial con-
ditions of the parameters are αk(l = 0) = 1 and
γkq(l = 0) = 0. We transform the spin operator ac-
cording to

Sz
i (l) = β(l)Sz

i +
1
N

∑

kqσ

ζkq(l) σSσ
i ei(k−q)Ric†kσ̄cqσ (30)

Sσ
i (l) = β(l)Sσ

i +
1
N

∑

kqσ′
ζkq(l) σSσ

i ei(k−q)Riσ′c†kσ′cqσ′

+
2
N

∑

kq

ζkq(l) σSz
i ei(k−q)Ric†kσcqσ̄. (31)

Here the initial parameters are β(l = 0) = 1 and
ζkq(l = 0) = 0.

In order to derive the flow equations for the param-
eters of the operator transformations we have to use an
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equivalent decoupling scheme as for the Hamiltonian. We
finally arrive at the following differential equations

dαk

dl
=

1
2N

∑

q

S(k − q)ηJ
kqγqk (32)

dγkq

dl
=

1
2
ηJ

qkαk (33)

for the parameters of the electron operator transformation
and

dβ

dl
= − 2

N2

∑

kq

ηJ
kqζkqnk(1 − nq) (34)

dζkq

dl
=

1
2
βηJ

qk (35)

for the parameters of the spin operator transformations.
We notice that the spin correlation function S(k − q)
of the effective model enters the flow equation of αk(l)
whereas the occupation numbers nk govern the flow equa-
tion of β(l). We restrict the flow equations for the correc-
tion terms to first order contributions in the Kondo cou-
pling. Going beyond this approximation could bring us
up against the violation of certain summation rules which
have to be fullfilled. We can combine the above equations
to obtain flow invariant expressions. The expectation val-
ues S(k−q) and nk are taken with respect to the effective
Hamiltonian and are therefore l-independent. We arrive at

α2
k(l) +

1
N

∑

q

S(k − q)γ2
kq(l) = 1 (36)

and
β2(l) +

4
N2

∑

kq

ζ2
kq(l)nk(1 − nq) = 1, (37)

which displays the unitarity of the transformation.
After determining the operator transformation we are

now able to calculate static and dynamic correlation func-
tions that characterise the ground state properties of the
one-dimensional KLM. One of the most important quan-
tities is the momentum distribution n(k) which reads

n(k) =
〈
c†kσckσ

〉
= α̃2

knk +
1
N

∑

q

γ̃2
kqS(k − q)nq. (38)

For a Luttinger liquid we expect a continuous behaviour
with respect to the momentum k and a power law singu-
larity at the Fermi momentum. The position of this sin-
gularity fixes the size of the Fermi surface.

The static correlation function of the local moments
Sff (q) indicates the phase transition from the paramag-
netic phase into the ferromagnetic phase on increasing the
Kondo coupling J . Within our approach it is given by

Sff (q) = 〈Sq · S−q〉
= β̃2S(q) +

4
N2

∑

kp

ζ̃2
kpS(k − p + q)nk(1 − np).

(39)

We can also evaluate the static charge correlation func-
tion C(q) and the static spin correlation function Scc(q)
of the electrons. Their rather lengthy expressions are given
in the appendix.

The flow equation formalism allows us to calculate dy-
namic quantities. The first quantities we look at are the
one-particle spectral functions A±(k, ω) of the conduction
electrons which measure occupied and empty states of the
conduction electrons.

A+(k, ω) =
∫ ∞

−∞
dt〈ckσ(t)c†kσ〉eiωt = α̃2

k(1 − nk)δ(ω − ε̃k)

+
1

2N2

∑

qp

γ̃2
kq(upvk+p−q − vpuk+p−q)2

× (1 − nq)δ(ω − ε̃q − ω̃p − ω̃k+p−q) (40)

A−(k, ω) =
∫ ∞

−∞
dt〈c†kσ(t)ckσ〉eiωt = α̃2

knkδ(ω − ε̃k)

+
1

2N2

∑

qp

γ̃2
kq(upvk+p−q − vpuk+p−q)2

× nqδ(ω − ε̃q + ω̃p + ω̃k+p−q). (41)

Here uk and vk are the coefficients of the Bogolubov trans-
formation used to diagonalize the Schwinger boson mean
field Hamiltonian (24). The spectral functions A±(k, ω)
comprise two contributions. The first term (∼α̃2) repre-
sents a coherent quasiparticle excitation. The second term
is an incoherent background. It is important to note that
the elementary excitations of the spin system of the ef-
fective Hamiltonian ω̃q enter the latter contribution. The
electronic density of states defined by

ρ(ω) = − 1
N

∑

k

1
π

Im G(k, ω), (42)

with G(k, ω) being the electronic Green’s function, can
also be calculated.

Another important quantity is the dynamic spin struc-
ture factor Sff (q, ω) of the local moments

Sff (q, ω) =
∫ ∞

−∞
dt〈Sq(t) · S−q〉eiωt =

1
2N

∑

p

β̃2

× (upvp+q − vpup+q)2δ(ω − ω̃p − ω̃p+q)

+
2

N3

∑

kpp′
ζ̃2
kp(up′vp′+k−p+q − vp′up′+k−p+q)2

× nk(1 − np)δ(ω−ω̃p′−ω̃p′+k−p+q + ε̃k−ε̃p).
(43)

The first line describes only the spin excitations of the ef-
fective model in terms of Schwinger bosons. The second
line of equation (43) results from the coupling of the local
moments to electronic particle-hole excitations of the ef-
fective Hamiltonian. In addition, we can also calculate the
dynamic spin structure factor of the conduction electrons
Scc(q, ω) which is found in the appendix.
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Fig. 2. Spin correlation function S(q) of the effective model
for two different fillings nc.

4 Results

After having derived theoretical expressions for various
correlation functions from the flow equation approach we
now turn to present the outcome of the numerical solu-
tion of the flow equations (15–19) and (32–35). We start
with the result for the parameters of the Hamiltonian and
subsequently show our findings for static and dynamic cor-
relation functions. We shall show to what extend the stat-
ics reflects the expected Luttinger liquid behaviour. We
also clarify the possibility of the approach to describe the
quantum phase transition on increasing coupling strength.

4.1 Parameters of the Hamiltonian

In order to solve equations (15–19) we used a Runge Kutta
algorithm. The complexity of the differential equation re-
stricted our system size to N = 120. Remember that the
spin correlation function S(k − q) which enters the flow
equations has to be calculated with respect to the effective
model (12). Therefore the parameters of the Hamiltonian
had to be determined self-consistently.

The spin correlation function S(q) of the effective
model plays an important role. We therefore start our dis-
cussion with S(q) which is shown in Figure 2. The main
feature is the dominant peak that shows up exactly at
the wave vector q = 2kc

F = ncπ, where kc
F is the Fermi

momentum of the conduction electrons. As we shall see
later the pronounced structure has severe consequences
for other quantities that are related to S(q). The pro-
nounced peak is due to the special excitation spectrum of
the Schwinger bosons. The other main property of S(q) is
the vanishing ferromagnetic component (q = 0) which can
easily be understood from equation (25).

The elementary excitations ω̃q of the spin system of
H̃ are shown in Figure 3. They exhibit a small but fi-
nite gap at q = kc

F mod π. This small gap is responsible
for the strong peak in S(q). It manifests the rotational

0 π/2  π 3π/2 2π
q

0

0,01

0,02

0,03

0,04

0,05

ω∼ q

Fig. 3. Elementary excitations ω̃q at nc = 2/3 and J/t = 1.5.

invariance of the ground states and is an artifact of the
Schwinger boson approach as we are dealing here with half
integer spins (S = 1/2) which may have a gapless excita-
tion spectrum. Nevertheless, within the Schwinger boson
approach a vanishing gap would give rise to a ground state
with broken symmetry that contradicts the assumption of
a rotational invariant paramagnetic phase. However, the
important point is the position of this gap. It determines
the maximum of the spin correlation function which turns
out to be at the expected position. Therefore we assume
that a description in terms of spinons should not change
these results decisively. Looking at equation (25) we see
that always pairs of excitations enter the equation for S(q)
so that the maximum of the spin correlation function is
found at q = 2kc

F = ncπ.
At this point we add that we found solutions for the

saddle point equations of the SBMFT only in the param-
eter regime 1/2 < nc < 1. The case of half filling is special
in the sense that there exists a gapped spin liquid phase.
It remains an open question whether the present approach
can also be used to describe this phase. Below nc = 1/2 the
dominance of the ferromagnetic components in the RKKY
coupling Jij prevents a solution of the saddle point equa-
tions of the SBMFT.

Finally we discuss the renormalized electronic single-
particle energies. The dispersion relation ε̃k is presented
in Figure 4. We assume the unrenormalized single-
particle energies to follow a tight binding dispersion εk =
−2t(cosk−1), where we set the bottom of the band equal
to zero and t = 1/2. We recognise two basic features for
ε̃k. The first is a broadening of the band. The effective
band width is enlarged compared with the original band
width W = 4t. The other one is a decreasing density of
states at the Fermi momentum k = kc

F and at k = π−kc
F .

This property is mainly due to the dominant peak struc-
ture in the spin correlation function S(q) at q = 2kc

F . The
wave vector q = 2kc

F connects the two points of the Fermi
surface. Therefore the energies near the Fermi surface be-
come more strongly renormalized than energies near the
band edge. The pseudo-gap like structure at k = kc

F is



322 The European Physical Journal B

0 π/2 π

k

0

0,5

1

1,5

2

ε∼ k / 
2t

J/t = 0,5

0 π/2 π

k

0

0,5

1

1,5

2

ε∼ k / 
2t

J/t = 1

Fig. 4. Renormalized electronic single particle energies ε̃k at
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Fig. 5. Moment distribution function n(k) at nc = 2/3 and
different values J/t. The lines are drawn by ommiting the point
at k = kc

F .

thus due to the strong spin fluctuations at q = 2kc
F . As

we are going to see this behaviour shall have consequences
for the electronic density of states ρ(ω). As the Luttinger
liquid theory expects ρ(ω) to vanish at ω = 0 a decreasing
density of states in the renormalized electron spectrum is
reasonable. In order to resolve the observed structures in
the renormalized electron spectrum we need to examine
larger systems.

4.2 Static properties

Let us now study the static correlation functions calcu-
lated in the last section. The first quantity we want to con-
sider is the momentum distribution function n(k) which
is shown in Figure 5. We obtain meaningful results only
for couplings up to J/t ≈ 1. This signals a breakdown of
the flow equation treatment. In order to get better results
for larger ratios J/t we need to go beyond the third or-
der corrections in the flow equations. Looking at n(k) we
notice that it is smeared out around kc

F = ncπ/2. How-
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Fig. 6. Charge correlation function C(q) of the electrons for
different values J/t and band fillings nc. Circles are drawn for
comparison, taken from [30] at J/t = 1 and nc = 4/5.

ever, we can not decide whether these results support the
expected Luttinger liquid picture or not. The special be-
haviour of n(k) at k = kc

F may be due to the dominant
peak structure of S(q). Since it is difficult to resolve the
sharp peak of S(q) appropriately for a finite system, we
are not sure whether the artifact at k = kc

F is due to
the finite system size or the approximations. Nevertheless,
the shape of the momentum distribution function tends to
support a small Fermi surface, because there is no feature
at k = (nc + 1) π/2. Additionally, one may question if the
effective model (12) is capable of describing a large Fermi
surface. The system of conduction electrons within the ef-
fective model has a Fermi momentum ncπ/2. Therefore
a singularity in the momentum distribution function is
likely to be expected only at the point k = kc

F .
We can get further information from the charge corre-

lation function C(q). The results are depicted in Figure 6.
As we expect for small couplings J/t the function C(q)
takes the form of a noninteracting one-dimensional elec-
tron gas with a kink at q = 2kc

F = ncπ. Increasing J/t
leads to a cusp-like behaviour of C(q) at q = 2kc

F . In ad-
dition, the slope at q = 0 drops with growing interaction
stregth J/t. The results displayed in Figure 6 agree quali-
tatively with the findings from numerical treatments [4,8]
in the examined parameter regime (J/t � 1). This sup-
ports the Luttinger liquid picture of our description.

The charge correlation function gives us the possibility
to derive the parameter Kρ of the Luttinger liquid theory.
This parameter is connected to the slope of C(q) at q = 0
via the relation [29]

Kρ = π
∂C(q)

∂q

∣∣∣∣
q=0

. (44)

The outcome is depicted in Figure 7 as a function of the
Kondo coupling J/t. As we have already mentioned be-
fore the slope of C(q) at q = 0 decreases with growing
coupling strength (up to the allowed value of J/t � 1).
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Fig. 7. Parameter Kρ as function of J/t for two different
band fillings nc. Circles are drawn for comparison, data taken
from [30] for nc = 4/5.

For vanishing interaction strength Kρ → 1 corresponding
to a noninteracting electron gas. This can be understood
from the equation for C(q) given in the appendix. Due
to the flow equation (33) for the parameter γkq of the
electron operator transformation all terms vanish which
represent corrections to the charge correlation function
of independent electrons. Our findings are in qualitative
agreement with recent numerical results from DMRG cal-
culations [30]. Xavier and Miranda find a minimum of
Kρ(J) at J/t ≈ 1.5. Remember that our largest possible
coupling is smaller than 1.5. Quantitatively our results are
always considerably smaller than the values found in ref-
erence [30]. Another work by Shibata et al. [6] gives results
for large J/t. In contrast to our findings and to those of
Xavier and Miranda [30] these authors expect Kρ → 0 in
the limit J/t → 0.

We also considered the dependence of Kρ on the band
filling nc. This is depicted in Figure 8. The lower possible
value of the band filling is nc = 1/2 as we do not obtain a
solution of the flow equations below this value within the
present approach. At small values J/t we find a mono-
tonic decrease by lowering nc. Again we find qualitative
agreement with Xavier and Miranda [30]. As we already
mentioned in the last discussion our values for Kρ are
considerably smaller compared to the numerical data. For
larger J/t the behaviour deviates even qualitatively from
the numerical DMRG data. Whereas in reference [30] for
all values of J/t a monotonic increase was obtained on in-
creasing nc, we find a maximum in the function Kρ(nc).

The magnetic properties of the one-dimensional KLM
are significant for the determination of the phase transi-
tion from the paramagnetic metallic phase into the fer-
romagnetic phase. The spin correlation function for the
conduction electrons Scc(q) as well as for the local mo-
ments Sff (q) show a characteristic increase of the ferro-
magnetic component q = 0 on approaching the quantum
phase transition.

0,5 0,6 0,7 0,8 0,9
n

c

0

0,2

0,4

0,6

0,8

1

K
ρ(n

c)

DMRG J/t = 0,35
J/t = 0,5
J/t = 1

Fig. 8. Parameter Kρ as function of the band filling nc for
different values J/t. Circles are drawn for comparison, data
taken from [30] for J/t = 0.35.
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Fig. 9. Spin correlation function Scc(q) of the electrons for
different values J/t and band fillings nc. Circles are drawn for
comparison, data taken from [8] for J/t = 1 and nc = 7/10.

The spin correlation function of the electrons Scc(q)
is shown in Figure 9. The strong peak at q = 2kc

F re-
sults from the sharp maximum of the spin correlation
function S(q) of the effective model. This can easily be
seen from the expression of Scc(q) given in the appendix.
Another characteristic is the finite weight of the ferro-
magnetic component q = 0 which is directly connected
with the occurrence of the quantum phase transition. On
approaching the critical J/t the maximum of Scc(q) at
q = 2kc

F loses weight in favour of the ferromagnetic com-
ponent. This behaviour marks the phase transition [4]. As
we already mentioned the present approach is restricted
to values of J/t � 1. These values are too small compared
to the value at the transition point which is J/t � 2.5 for
nc = 2/3 [6]. Nevertheless, we observe some tendency to-
wards the magnetic phase transition. As in the case of the
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charge correlation function we compare our results with
numerical data from [8]. One can clearly see the qualita-
tive agreement between the two approaches, although our
findings tend to be smaller than the DMRG results. This
is important if one considers the points at q = 0. The in-
crease of the ferromagnetic component, which signals the
tendency towards the quantum phase transition, turns out
to be comparably weak.

The situation we have just described is also charac-
teristic for the spin correlation function Sff (q) of the local
moments which is drawn in Figure 10. For small couplings
we see that the corrections to the spin correlation function
of the effective model S(q) are negligible small. Even for
larger values of J/t we find only small corrections. The
vicinity of the ferromagnetic component q = 0 is shown in
the inset. Nevertheless, the qualitative behaviour is once
again in agreement with numerical results [4] though the
values are somewhat larger. Again, the ferromagnetic com-
ponent gets an increasing weight while the q = 2kc

F com-
ponent is suppressed.

4.3 Dynamic properties

In the last section we have presented the results for static
expectation values and correlation functions. We have
found that our results are in qualitative agreement with
numerical data for small couplings J/t. The flow equa-
tion method sets us in the position to calculate not only
static but also dynamic correlation functions. Within our
approach the dynamics of the KLM is described in terms
of the effective model (12). Since H̃ is blockdiagonal the
dynamics for electrons and local spin moments separate.
The SBMFT allows us, at least approximately, to charac-
terise the excitations of the spin system. The excitations
of the KLM are determined by a noninteracting Fermi gas
(conduction electrons) and the Schwinger bosons. In this
section we shall add new aspects to the results obtained
by [10].
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c
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Fig. 11. Dynamic correlation functions A+(k, ω) (black) and
A−(k, ω) (blue) for k = 0 (up) to k = π (down).

We start with the dynamic properties of the conduc-
tion electrons. The first quantities we want to consider
are the electronic spectral functions A±(k, ω) which can
be measured in XPS and inverse XPS experiments. The
outcome is shown in Figure 11. The energy is measured
with respect to the Fermi-energy of the conduction elec-
trons εc

F = ncπ/2. As we have already mentioned in the
last section both functions consist of two parts. A coher-
ent quasiparticle-like contribution embodied by the finite
peak which has a weight α̃k. Its position is simply given by
the renormalized single-particle energies ε̃k. The incoher-
ent background contains pairs of elementary excitations
of the spin system of H̃. This follows directly from equa-
tion (29) since within the Schwinger boson approach for
the effective spin system the corrections to the spectral
functions A±(k, ω) are always connected to the creation
(annihilation) of pairs of bosons. The coupling to the con-
tinuum of Schwinger boson excitations and the results for
γ̃kq give rise to the two maxima around the quasiparticle-
like peak.

The electronic density of states ρ(ω) is an impor-
tant quantity which shows a characteristic behaviour for
Luttinger liquids. It is drawn in Figure 12. Again, the en-
ergy is measured with respect to εc

F = ncπ/2. We find
two minima, one in the vicinity of the Fermi level of the
conduction electrons, ω = 0, the other above the Fermi
level. This behaviour follows from the pseudogap-like be-
haviour of the renormalized single-particle energies ε̃k. In
contrast to our findings DMRG studies from Shibata and
Tsunetsugu [10] do not yield a minimum but rather a peak
structure just below ω = 0 indicating the development of
a pseudo gap. However, their results were performed at
finite temperatures. The Luttinger liquid theory predicts
a density of states following ρ(ω) ∼ |ω|α, 0 < α < 1 in the
vicinity of ω = 0. As can be seen from Figure 12 there is
no real vanishing of ρ(ω) at ω = 0. As we are dealing here
with a finite system size we are not able to resolve ρ(ω)
near ω = 0 and to verify the expected behaviour.

Let us now turn to the magnetic properties. We want
to present the results for the dynamic spin structure fac-
tors of the electrons Scc(q, ω) and the local moments
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Fig. 13. Dynamic spin structure factor of the electrons
Scc(q, ω) for J/t = 1 and nc = 3/5, q = 0 (bottom) and q = π
(top). Left: low-energy part; right: high-energy part.

Sff (q, ω). They describe the magnetic excitations of the
coupled system and can be measured by inelastic neutron
scattering experiments.

We begin with the electronic dynamic spin structure
factor Scc(q, ω) which consists of a low- and a high-energy
part. Both are discussed separately. The low energy sector,
left panel of Figure 13, is characterised by the spin part of
the effective model H̃S , i.e. the continuum of pair excita-
tions of the Schwinger bosons. The dominant contribution
is therefore found at q = 2kc

F . It is multiplied by a factor
1/4 for a better comparison. We also see that there are
regions where no excitations are possible. Furthermore,
the gap in the spectrum of the elementary excitations ω̃q

leads to a gap in the low-energy part of Scc(q, ω). The
high-energy sector of Scc(q, ω) is shown in the right panel
of Figure 13. The spectral weights are about 10 times
smaller compared to the weights of the low-energy part.
The main contribution arises from electronic particle-hole
excitations of the effective model. The specific form of this
contribution shows therefore the characteristics of a one-
dimensional electron gas: a gapless excitation at q = 2kc

F
and regions between 0 < q < 2kc

F where no excitations are
possible. In addition to the terms describing pure particle-

Fig. 14. Low energy part of the dynamic spin structure factor
Sff (q, ω) of the local moments for J/t = 1.5 and nc = 3/5. The
colour function is normalised to the maximum contribution.

hole excitations there are also terms involving the elemen-
tary excitations ω̃q of the effective spin system. They are
responsible for the broadening of the structures in the high
energy sector of Scc(q, ω).

The DMRG calculations of Shibata et al. for Scc(ω) =∫
dq
2π Scc(q, ω) showed a small peak at very low energies

and a larger double peak structure at higher energies [10].
We obtain a similar peak structure, but in contrast to the
results of [10] the spectral weight of the low energy part
is much larger than the spectral weight of the high energy
part. This does not agree with the picture of an exhaustion
of the electronic low-energy spin degrees of freedom due
to singlet formation described by [10].

Finally we want to discuss the magnetic excitations of
the system of local spin moments described by the dy-
namic spin structure factor Sff (q, ω). As in the case of
the electronic spin structure factor Scc(q, ω) this function
comprises a low- and a high-energy part. The first one
is again determined by the elementary excitations ω̃q of
the spin part of the effective model H̃S . It is depicted
in Figure 14 and possesses the same features as the low-
energy part of Scc(q, ω). From this picture we can clearly
see the influence of the low-energy spin excitations. The
distinct structure at q = 2kc

F gives rise to the pronounced
peak in the static spin correlation function S(q). Once
again we point out that the energy scale of these exci-
tations are quite small compared with the effective band
width of the electrons. The DMRG results of Shibata et al.
for Sff (ω) =

∫
dq
2π Sff (q, ω) show a large peak structure at

very small energies [10]. They assume that this is due to
collective spin excitations of the Luttinger-liquid. In our
approach the low-energy peak is the result of the contin-
uum of elementary excitations of the effective spin system,
which we described in terms of Schwinger bosons.

The high-energy part of Sff (q, ω) is shown in Figure 15.
As in the case of Scc(q, ω) it is mainly determined by
particle-hole excitations of the Fermi sea. At larger cou-
plings J/t the elementary spin excitations ω̃q lead to the
broadening of the peak structure. Shibata et al. obtain a
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second peak in the high-energy sector of Sff (ω) [10]. Our
approach yields a similar structure in the local spin dy-
namics, although the spectral weight of the high-energy
part is much smaller than the spectral weight of the low-
energy part.

We further note that Sff (q, ω) exhibits a finite gap.
This is an artifact and due to the approximations that we
have made for the spin operator transformation. By tak-
ing into account higher correction terms the transformed
spin operator of the local spin moment couples to the spin
operator of the conduction electrons. This gives rise to a
gapless mode in Sff (q, ω).

5 Conclusion

In summary, we used the method of continuous uni-
tary transformations (flow equation method) to examine
the one-dimensional KLM. The renormalization procedure
was employed to integrate out the coupling between con-
duction electrons and local spin operators. In that way we
derived an effective Hamiltonian which consists of an one-
dimensional noninteracting electron gas and a Heisenberg
chain interacting via an RKKY-like coupling. In order to
treat the spin chain we used a Schwinger boson mean
field theory (SBMFT). Thereby we were able to calcu-
late static and dynamic correlation functions. The inves-
tigation of the electronic momentum distribution revealed
a small Fermi surface. We gave arguments, referring to
the effective model, why we were not able to obtain the
large Fermi surface scenario in our approach. Neverthe-
less, the static spin and charge correlation functions of
the electrons agreed qualitatively with numerical results.
In addition we obtained the parameter Kρ of the Luttinger
liquid theory and found also qualitative agreement with
recent DMRG calculations. The present approach was
restricted to parameter regimes J/t � 1. Although the

quantum phase transition from the paramagnetic metallic
into the ferromagnetic phase takes place at larger values,
we observed some tendency to a stronger ferromagnetic
component in the static spin correlation functions. The
new aspect of this work was the extension of calculations
for dynamic properties by means of the flow equation’s
method. We showed that the electronic spectral func-
tions comprised a coherent quasiparticle-like peak deter-
mined by the renormalized electronic dispersion relation.
The coupling to the low-energy excitation of the effective
spin model gave an incoherent background comprising two
maxima near the quasiparticle-like peaks. Finally, we also
computed the magnetic excitations of both the electrons
and the local spins. The corresponding spin structure fac-
tors always consisted of a low-energy part, determined by
the Schwinger boson pair excitations, and a high-energy
part, mostly determined by electronic particle-hole exci-
tations. The latter therefore showed the special features
of the one-dimensional Fermi surface. The electronic spin
structure factor exhibited a gapless mode at q = 2kc

F .
Our results for the electronic spin dynamics did not agree
with the exhaustion picture described by [10]. The gapless
mode at q = 2kc

F should also be seen in the spin structure
factor of the local moments. There we argued that further
corrections in the spin operator transformation would lead
to a gapless mode.
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K. Meyer for helpful discussions and hints. This work was
supported by the Deutsche Forschungsgemeinschaft (DFG)
through the research programme SFB 463, Dresden.

Appendix A: Correlation functions in the flow
equation approach

In this appendix we give the rather lengthy expressions
for the static and dynamic correlation functions omitted
in the text. These are the static charge correlation function
C(q) which reads

C(q) =
1
N

∑

kk′σσ′
〈c†k+qσckσc†k′−qσ′ck′σ′ 〉

=
2
N

∑

k

α̃2
k α̃2

k+q nk+q(1 − nk)

+
4

N2

∑

kp

α̃k α̃k+q γ̃p,k+q γ̃p−q,k

× S(k − p − q) nk+q(1 − nk)

+
2

N2

∑

kp

α̃2
k γ̃2

k−q,p S(k − p − q) nk(1 − np)

+
2

N2

∑

kp

α̃2
k γ̃2

k+q,p S(k − p + q) np(1 − nk)

+
4

N2

∑

kp

α̃k α̃p γ̃p+q,k γ̃k−q,p

× S(k − p − q) nk(1 − np). (A.1)
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The dynamic spin structure factor Scc(q, ω) of the elec-
trons takes the form

Scc(q, ω) =
∫ ∞

−∞
dt 〈sq(t) · s−q〉 eiωt

=
3

2N

∑

k

α̃2
k α̃2

k+q nk+q(1 − nk) δ(ω − ε̃k + ε̃k+q)

− 1
N2

∑

kp

α̃k α̃k+q γ̃p−q,k γ̃p,k+q

× S(k − p − q) nk+q(1 − nk) δ(ω − ε̃k + ε̃k+q)

− 1
2N3

∑

kpp′
α̃k α̃p γ̃p+q,k γ̃k−q,p (up′vp′+k−p−q

− vp′up′+k−p−q)2 nk(1 − np)δ(ω − ω̃p′

− ω̃p′+k−p−q − ε̃k + ε̃p)

+
3

4N3

∑

kpp′
α̃2

k γ̃2
k+q,p (up′vp′+k−p+q

− vp′up′+k−p+q)2 np(1 − nk)δ(ω − ω̃p′

− ω̃p′+k−p+q − ε̃p + ε̃k)

+
3

4N3

∑

kpp′
α̃2

k γ̃2
k−q,p (up′vp′+k−p−q

− vp′up′+k−p−q)2 nk(1 − np)δ(ω − ω̃p′

− ω̃p′+k−p−q − ε̃k + ε̃p)

+
1

2N3

∑

kpp′
α̃k α̃p (γ̃k+q,k γ̃p−q,p

+ γ̃k−q,k γ̃p+q,p)nk np (up′vp′+q

− vp′up′+q)2 δ(ω − ω̃p′ − ω̃p′+q)

+
1

2N3

∑

kpp′
α̃k α̃p (γ̃k−q,k γ̃p−q,p

+ γ̃k+q,k γ̃p+q,p)nk np (up′vp′+q

− vp′up′+q)2 δ(ω − ω̃p′ − ω̃p′+q). (A.2)

Here, it can clearly be seen that the second and third
line involves only particle hole excitations of the Fermi
sea of the effective model. The last two lines represent the
low energy sector of Scc(q, ω) as they include only pair
excitations of Schwinger bosons. On integrating over the
energy ω one obtains the expression for the static spin
correlation function Scc(q).
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